Algorithms and Programming |

Spring 2015

Lecture 3

INSERTION-SORT(A)

I for j « 2tolength[A]

2 do key < AlJ]

3 > Insert A[j] into the sorted sequence A[l.. j - 1].
4 i« j—1

5 while i > O and A[i] > key
6 do Ali + 1] « Ali]
7 | —i—1

8

Ali + 1] « key

Lﬂﬂ'p ilﬁrﬂr]a“ts and thE correctness ﬂf iﬂﬁertiﬂﬂ sort Figure 2.1 Sorting a hand of cards using insertion sort.

INSERTION-SORT(.A) COSt rimes

I for j < 2tolength|[A] ¢y OHwhy?
2 do key <— Al] C2 n— 1
3 == Insert Al s] into the sorted
sequence Al .. ;7 — 1]. 0 n — 1
4 i «— j—1 Cq n—1
5 while i = 0 and A[i] = key Cs 2 =2t
6 do Ali + 1] < A[{] Ce > oty — 1)
7 i —F —1 Oy Zj:zgl[.i'j — 1)
8 Ali + 1] <« key Cy n— 1

t; is the number of times the while loop test in line 5 is executed
for that value of j.

T(n) = ¢;n + ¢,(n-1) + ¢4(n-1) + C 2icon G+ Co 2500 0 (tj-l)
+ C; 2.0 (§-1) + Gg(n-1)

T(n) O(n?), In Place sorting

Divide-and-Conquer: MERGE-SORT
MERGE-SORT(A, p, r)
1 ifp<r Check for base case
2 theng < |[(p +r)/2] Divide
3 MERGE-SORT(A, p, q) Conquer
4 MERGE-SORT(A, g + 1,7) Conquer
5 MERGE(A, p,q,r)

combine

MERGE(A, p,q,r)

Q0 ~1 Ov h I) B =

ot et
o = O \O

13
14
15
16
17

n <«—qg—p-+1
Ny <— 1 — (¢
create arrays L[1..n; + 1] and R[] ..n, + 1]
fori < 1 to n,
do L[i] «— A[p +i — 1]
for j < 1 to n,
do R[j] < Alg + j)
Lin +1] « o0
R[ny + 1] <« o0
| «— 1
J <1
fork < ptor
doif L[i] < R[]]
then A[k] < L[i]
I «— [+ 1
else Alk] < R[/]
J < j+1

MERGE() requires extra space
— arrays L and R — of the size
of the input + 2.

What is the time
complexity of MERGE?

Ques: Could the merging be
done /in-place?

sorted sequence

1 2 2 3 4 5 6 7
/ merge \

2 4 5 T
/ merge \

2 5
/;rg&
5 2

4 7
A‘m‘g&
4 .

I 2 3 6
/ merge \

1 3 2 6
%ﬂﬂl‘g& ﬂnmg&
I 3 2 6]

aaaaa =

initial sequence

Figure 2.4 The operation of merge sort on the array A = (5,2,4,7, 1, 3, 2, 6). The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

Analyzing divide-and-conquer algorithms

Use a recurrence equation (more commonly, a recurrence) to describe the running
time of a divide-and-conquer algorithm.

Let 7 (n) = running time on a problem of size n.

* If the problem size is small enough (say, n < ¢ for some constant ¢), we have a
base case. The brute-force solution takes constant time: ®(1).

* Otherwise, suppose that we divide into a subproblems, each 1/b the size of the
original. (In merge sort, a = b = 2.)

* Let the time to divide a size-n problem be D (n).

* Have a subproblems to solve, each of size n/bh = each subproblem takes
T (n/b) time to solve = we spend a7 (n/b) time solving subproblems.

* Let the time to combine solutions be C(n).

* We get the recurrence

G(1) itn <c,

Ir(n)y=43 .
al(n/b) + D(n)+ C(n) otherwise .

Analyzing merge sort

For simplicity, assume that 7 1s a power of 2 = each divide step yields two sub-
problems, both of size exactly /2.

The base case occurs when n = 1.

When n > 2, time for merge sort steps:

Divide: Just compute ¢ as the average of p and r = D(n) = O(1).
Conquer: Recursively solve 2 subproblems, each of size n/2 = 2T (n/2).

Combine: MERGE on an n-element subarray takes ®(n) time = C(n) = ®(n).

Since D(n) = &(1) and C(n) = ®(n), summed together they give a function that
1s linear 1n n: ®(n) = recurrence for merge sort running time 1s

) O ifn=1,

I'(n)=14_ - .
2T (n/2) + ®(n) ifn>1.

The recurrence for the worst-case
running time T(n) of MERGE-SORT:

T(n) = | 6(1) ifn=1
2T(n/2) + ©(n) ifn>1

equivalently

T(n) = (ol ifn=1
2T(n/2) + c,n ifn>1

T(r) o e
Tint2) Tin2) cnf2 o2
T{n/4) Timf4) T{n/4) TCnid)
(a) (b} (c)
A /‘fli B e cR
crf2 CHf 2 s HITS Pl
| 4 4 cfd onfd s e o
()
{
[:) . . oo
[# 0 [[[- c £ 1] CH
i
(dy Total: en lg n+ cn
Figure 2.5 The construction of a recursion tree for the recurrence Tin) = 2T (n/2)y 4 cn.

Part (a} shows T {a), which is progressively expanded in (b)=(d) to fornm the recursion tree. The
fully expanded tree in part (d) has lg m + 1 levels (i.c.. it has height Ig n, as indicated), and cach level
contributes a total cost of cn. The tolal cost, therefore, is en lgn + cn, which is G (n lgn).

