Algorithms and Programming I

Spring 2015
Lecture 3

```
Insertion-Sort ( \(A\) )
1 for \(j \leftarrow 2\) to length[A]
2 do key \(\leftarrow A[j]\)
\(3 \triangleright\) Insert \(A[j]\) into the sorted sequence \(A[1 \ldots j-1]\).
        \(i \leftarrow j-1\)
        while \(i>0\) and \(A[i]>k e y\)
            do \(A[i+1] \leftarrow A[i]\)
                \(i \leftarrow i-1\)
        \(A[i+1] \leftarrow\) key
```

Loop invariants and the correctness of insertion sort

Figure 2.1 Sorting a hand of cards using insertion sort.

```
    for \(j \leftarrow 2\) to length \([A]\)
2 do key \(\leftarrow A[j]\)
                \(\triangleright\) Insert \(A[j]\) into the sorted
sequence \(A[1 \ldots j-1]\).
                \(\triangleright\) Insert \(A[j]\) into the sorted
sequence \(A[1 \ldots j-1]\).
                                \(c_{1} \bigcirc\) why?
                \(i \leftarrow j-1\)
                while \(i>0\) and \(A[i]>\) key
            do \(A[i+1] \leftarrow A[i]\)
                    \(i \leftarrow i-1\)
        \(A[i+1] \leftarrow k e y\)
```

 cost times
 t_{j} is the number of times the while loop test in line 5 is executed for that value of j.

$$
\begin{aligned}
T(n)= & c_{1} n+c_{2}(n-1)+c_{4}(n-1)+c_{5} \sum_{j=2 . . n} t_{j}+c_{6} \sum_{j=2 . . n}\left(t_{j}-1\right) \\
& +c_{7} \sum_{j=2 . . n}\left(t_{j}-1\right)+c_{8}(n-1)
\end{aligned}
$$

$\mathrm{T}(\mathrm{n}) \mathrm{O}\left(\mathrm{n}^{2}\right)$, In Place sorting

Divide-and-Conquer: MERGE-SORT

```
MERGE-SORT(A, p,r)
1 if }p<
2 then q}\leftarrow\lfloor(p+r)/2
    MERGE-Sort(A, p,q)
4 Merge-Sort ( }A,q+1,r
5 Merge(A,p,q,r)
Check for base case Divide
Conquer
Conquer combine
```

```
\(\operatorname{Merge}(A, p, q, r)\)
```

```
    \(n_{1} \leftarrow q-p+1\)
```

 \(n_{1} \leftarrow q-p+1\)
 \(n_{2} \leftarrow r-q\)
 \(n_{2} \leftarrow r-q\)
 create arrays \(L\left[1 \ldots n_{1}+1\right]\) and \(R\left[1 \ldots n_{2}+1\right]\)
 create arrays \(L\left[1 \ldots n_{1}+1\right]\) and \(R\left[1 \ldots n_{2}+1\right]\)
 for \(i \leftarrow 1\) to \(n_{1}\)
 for \(i \leftarrow 1\) to \(n_{1}\)
 do \(L[i] \leftarrow A[p+i-1]\)
 do \(L[i] \leftarrow A[p+i-1]\)
 for \(j \leftarrow 1\) to \(n_{2}\)
 for \(j \leftarrow 1\) to \(n_{2}\)
 do \(R[j] \leftarrow A[q+j]\)
 do \(R[j] \leftarrow A[q+j]\)
 \(L\left[n_{1}+1\right] \leftarrow \infty\)
 \(L\left[n_{1}+1\right] \leftarrow \infty\)
 \(R\left[n_{2}+1\right] \leftarrow \infty\)
 \(R\left[n_{2}+1\right] \leftarrow \infty\)
 \(i \leftarrow 1\)
 \(i \leftarrow 1\)
 \(j \leftarrow 1\)
 \(j \leftarrow 1\)
 for \(k \leftarrow p\) to \(r\)
 for \(k \leftarrow p\) to \(r\)
 do if \(L[i] \leq R[j]\)
 do if \(L[i] \leq R[j]\)
 then \(A[k] \leftarrow L[i]\)
 then \(A[k] \leftarrow L[i]\)
 \(i \leftarrow i+1\)
 \(i \leftarrow i+1\)
 else \(A[k] \leftarrow R[j]\)
 else \(A[k] \leftarrow R[j]\)
 \(j \leftarrow j+1\)
    ```
            \(j \leftarrow j+1\)
```

- arrays L and R - of the size of the input +2 .

What is the time complexity of MERGE?

Ques: Could the merging be done in-place?

Figure 2.4 The operation of merge sort on the array $A=\langle 5,2,4,7,1,3,2,6\rangle$. The lengths of the sorted sequences being merged increase as the algorithm progresses from bottom to top.

Analyzing divide-and-conquer algorithms

Use a recurrence equation (more commonly, a recurrence) to describe the running time of a divide-and-conquer algorithm.
Let $T(n)=$ running time on a problem of size n.

- If the problem size is small enough (say, $n \leq c$ for some constant c), we have a base case. The brute-force solution takes constant time: $\Theta(1)$.
- Otherwise, suppose that we divide into a subproblems, each $1 / b$ the size of the original. (In merge sort, $a=b=2$.)
- Let the time to divide a size- n problem be $D(n)$.
- Have a subproblems to solve, each of size $n / b \Rightarrow$ each subproblem takes $T(n / b)$ time to solve \Rightarrow we spend $a T(n / b)$ time solving subproblems.
- Let the time to combine solutions be $C(n)$.
- We get the recurrence

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq c \\ a T(n / b)+D(n)+C(n) & \text { otherwise }\end{cases}
$$

Analyzing merge sort

For simplicity, assume that n is a power of $2 \Rightarrow$ each divide step yields two subproblems, both of size exactly $n / 2$.
The base case occurs when $n=1$.
When $n \geq 2$, time for merge sort steps:
Divide: Just compute q as the average of p and $r \Rightarrow D(n)=\Theta(1)$.
Conquer: Recursively solve 2 subproblems, each of size $n / 2 \Rightarrow 2 T(n / 2)$.
Combine: MERGE on an n-element subarray takes $\Theta(n)$ time $\Rightarrow C(n)=\Theta(n)$.
Since $D(n)=\Theta(1)$ and $C(n)=\Theta(n)$, summed together they give a function that is linear in $n: \Theta(n) \Rightarrow$ recurrence for merge sort running time is

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}
$$

The recurrence for the worst-case running time $T(n)$ of MERGE-SORT:

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}
$$

equivalently

$$
T(n)= \begin{cases}c_{1} & \text { if } n=1 \\ 2 T(n / 2)+c_{2} n & \text { if } n>1\end{cases}
$$

$T(n)$

(a)
(b)

(c)

Figure 2.5 The construction of a recursion tree for the recurrence $T(n)=2 T(n / 2)+c n$. Part (a) shows $T(n)$, which is progressively expanded in (b)-(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n+1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of $c n$. The total cost, therefore, is $c n \lg n+c n$, which is $\Theta(n \lg n)$.

